"Areaal (Miat)" uun ööder spriakwiisen
Füsikaalisk grate
Nööm
Areaal Flaak
Formeltiaken
A
{\displaystyle A}
(area)
Hinget tuup mä
Lengde
At areaal as en miat för det grate faan en geomeetrisk objekt. Arealen san tau-dimensionaal, diar hiar geomeetrisk grünjfurmen tu üs at kwadroot , at rochthuk , triihuk of a kreis . Man uk a bütjensidjen faan trii-dimensionaal objekten üs kuugel , silinder of sjauerkaant san areaalen.
Areaalen faan enkelt geomeetrisk objekten
Bewerke
Objekt
Betiaknangen
Areaal
A
{\displaystyle A}
Kwadroot
Sidjenlengde
a
{\displaystyle a}
A
=
a
2
{\displaystyle A=a^{2}}
Rochthuk
Sidjenlengden
a
,
b
{\displaystyle a,\,b}
A
=
a
⋅
b
{\displaystyle A=a\cdot b}
Triihuk
Grünjsidj
g
{\displaystyle g}
, Hööchde
h
{\displaystyle h}
luadrocht tu
g
{\displaystyle g}
A
=
g
⋅
h
2
{\displaystyle A={\frac {g\cdot h}{2}}}
Trapeets
Parallel tuenööder sidjen
a
,
c
{\displaystyle a,\,c}
, Hööchde
h
{\displaystyle h}
luadrocht tu
a
{\displaystyle a}
an
c
{\displaystyle c}
A
=
a
+
c
2
⋅
h
{\displaystyle A={\frac {a+c}{2}}\cdot h}
Rütj
Diagonaalen
d
1
{\displaystyle d_{1}}
an
d
2
{\displaystyle d_{2}}
A
=
d
1
⋅
d
2
2
{\displaystyle A={\frac {d_{1}\cdot d_{2}}{2}}}
Paraleelogram
Sidjenlengde
a
{\displaystyle a}
, Hööchde
h
a
{\displaystyle h_{a}}
luadrocht tu
a
{\displaystyle a}
A
=
a
⋅
h
a
{\displaystyle A=a\cdot h_{a}}
Kreis
Raadius
r
{\displaystyle r}
A
=
π
r
2
{\displaystyle A=\pi r^{2}}
Elips
Grat an letj hualewaaksen
a
{\displaystyle a}
an
b
{\displaystyle b}
A
=
π
a
b
{\displaystyle A=\pi ab}
Likmiatag Sääkshuk
Sidjenlengde
a
{\displaystyle a}
A
=
3
3
2
a
2
{\displaystyle A={\frac {3{\sqrt {3}}}{2}}a^{2}}
Areaalen (bütjensidjen) faan trii-dimensionaal objekten
Bewerke
Sjauerflaak
Lik kreiskeegel mä ufwolet mantel
Objekt
Betiaknangen
Areaal
A
{\displaystyle A}
Dööbel
Sidjenlengde
a
{\displaystyle a}
A
=
6
a
2
{\displaystyle A=6a^{2}}
Sjauerkaant
Sidjenlengden
a
,
b
,
c
{\displaystyle a,\,b,\,c}
A
=
2
(
a
b
+
a
c
+
b
c
)
{\displaystyle A=2(ab+ac+bc)}
Sjauerflaak
Sidjenlengde
a
{\displaystyle a}
A
=
3
a
2
{\displaystyle A={\sqrt {3}}\,a^{2}}
Kuugel
Raadius
r
{\displaystyle r}
A
=
4
π
r
2
{\displaystyle A=4\pi r^{2}}
Türn
Grünjraadius
r
{\displaystyle r}
, Hööchde
h
{\displaystyle h}
A
=
2
π
r
(
r
+
h
)
{\displaystyle A=2\pi r(r+h)}
Keegel
Grünjraadius
r
{\displaystyle r}
, Hööchde
h
{\displaystyle h}
A
=
π
r
(
r
+
r
2
+
h
2
)
{\displaystyle A=\pi r(r+{\sqrt {r^{2}+h^{2}}})}
Ring
Bütjenraadius
R
{\displaystyle R}
, Banenraadius
r
{\displaystyle r}
A
=
4
π
2
⋅
R
⋅
r
{\displaystyle A=4\pi ^{2}\cdot R\cdot r}