En Rütj as en sjauerhuk mä likelung sidjen, diar oober (normoolerwiis) ei luadrocht tu enööder stun. Wan jo luadrocht stun, do as det Rütj en Kwadroot .
En rütj mä • huken A, B, C, D • likelung sidjen a, b, c, d • winkler α = γ, β = δ • hööchde ha = hb • diagonaalen e, f
Bereegnangsformeln
Areal
A
=
a
⋅
h
a
{\displaystyle A=a\cdot h_{a}}
A
=
e
⋅
f
2
{\displaystyle A={\frac {e\cdot f}{2}}}
A
=
a
2
⋅
sin
(
α
)
=
a
2
⋅
sin
(
β
)
{\displaystyle A=a^{2}\cdot \sin(\alpha )=a^{2}\cdot \sin(\beta )}
A
=
h
a
2
sin
(
α
)
=
h
a
2
sin
(
β
)
{\displaystyle A={\frac {h_{a}^{2}}{\sin(\alpha )}}={\frac {h_{a}^{2}}{\sin(\beta )}}}
Amfaadang
u
=
4
⋅
a
{\displaystyle u=4\cdot a}
Sidjenlengde
a
=
1
2
⋅
e
2
+
f
2
{\displaystyle a={\frac {1}{2}}\cdot {\sqrt {e^{2}+f^{2}}}}
Lengde faan a Diagonaalen
e
=
2
⋅
a
⋅
cos
(
α
2
)
=
2
⋅
a
⋅
sin
(
β
2
)
{\displaystyle e=2\cdot a\cdot \cos \left({\frac {\alpha }{2}}\right)=2\cdot a\cdot \sin \left({\frac {\beta }{2}}\right)}
f
=
2
⋅
a
⋅
sin
(
α
2
)
=
2
⋅
a
⋅
cos
(
β
2
)
{\displaystyle f=2\cdot a\cdot \sin \left({\frac {\alpha }{2}}\right)=2\cdot a\cdot \cos \left({\frac {\beta }{2}}\right)}
Banenkreisraadius
r
i
=
h
a
2
=
a
⋅
sin
(
α
)
2
=
a
⋅
sin
(
β
)
2
{\displaystyle r_{i}={\frac {h_{a}}{2}}={\frac {a\cdot \sin(\alpha )}{2}}={\frac {a\cdot \sin(\beta )}{2}}}
Hööchde
h
a
=
a
⋅
sin
(
α
)
=
a
⋅
sin
(
β
)
{\displaystyle h_{a}=a\cdot \sin(\alpha )=a\cdot \sin(\beta )}
h
a
=
e
⋅
f
e
2
+
f
2
{\displaystyle h_{a}={\frac {e\cdot f}{\sqrt {e^{2}+f^{2}}}}}
Banenwinkler
α
+
β
=
180
∘
{\displaystyle \alpha +\beta =180^{\circ }}
Rütjen uun't flag faan
Bayern
Penrose -Parket
Rütjenstäär
Markintiaken faan
Renault